energy_futures_1920x1080_orange.jpg
Visual Identity - Veera Kemppainen

Energy Futures

Critical minerals, climate neutrality and transition pathways

Explore the exhibits at Dipoli Gallery, Otaniemi, 16.03.23-15.09.23

Aalto_University_Sara_Urbanski_21-02-2023_by_Sara_Urbanski_004
Separated silver-plated copper wire, photovaltic solar panel waste. Image: Sara Urbanski, Aalto University, 2023

Utställningen fokuserar på energiomställningen och visar upp forskning från alla skolor vid Aalto-universitetet tillsammans med toppexperter. Vilka är de utmaningar och lösningar som driver vårt agerande mot den globala energikrisen inom forskning och industri?

Energiomställning är en term som avser processen för att ändra den globala energiproduktionen och energikonsumtionen från fossila bränslen till förnybara energikällor. Den globala energikrisen och klimatkrisen är sammankopplade och internationella politiska mandat från FN, t.ex. klimatrapporten från Förenta nationernas klimatpanel (IPCC), de globala målen för hållbar utveckling (SDGs) och United Nations Framework Convention on Climate Change (UNFCCC), inklusive fördrag som Parisavtalet där man strävar till att avsevärt minska koldioxidutsläppen. Men är denna strategi tillräckligt effektiv?

Kevitsa Mine 2
Kevitsa mine in Sodankylä, Northern Finland. Image: Tomas Westermark, © Boliden

Förutom att minska koldioxidutsläppen krävs en radikal omstrukturering av hela energisystemet, inklusive hur vi lagrar energi och de miljömässiga och ekonomiska konsekvenserna av mineralbrist. Vad kräver en effektiv övergång till förnybara energikällor och vilken roll spelar vätgas- och vindkraften för vår framtids energi?

Battery recycling mamangement_ Aalto BatCircle project_DSC_6604_photo Valeria Azovskaya_Original_Original.jpg
Recovered Co from Li-ion battery. Image: Valeria Azovskaya, Aalto University, 2020

Utställningen kommer att erbjuda en kombination av tvärvetenskapliga perspektiv på energiomställningen från ekologi och påverkan på den biologiska mångfalden, miljöekonomi och ny energiteknik till vindkraft, vätgas, omvandling av bränsleceller och infrastrukturer.

Utställningen kommer att erbjuda en kombination av tvärvetenskapliga perspektiv på energiomställningen från ekologi och påverkan på den biologiska mångfalden, miljöekonomi och ny energiteknik till vindkraft, vätgas, omvandling av bränsleceller och infrastrukturer.

DJI_0264.tif
Piiparinmäki Wind Farm, Finland. Image: Kalle Kataila, Aalto University, 2022

Finnish Renewable Energy

Thanks in part to its large geography and low population density, Finland has great wind power generation potential. Aside from questions of who will build turbines and where, Finland’s national energy grid must receive investments in transmission capacity to meet future electricity demand.  

DJI_0221.tif
Piiparinmäki Wind Farm, Finland. Image: Kalle Kataila, Aalto University, 2022
03 On top of the turbine
Piiparinmäki Wind Farm, Finland. Image: Kalle Kataila, Aalto University, 2022

Engineering education has long been concerned with innovation, while ecologists have been occupied with biodiversity loss and climate change for decades. Researchers at Aalto University are creating an interdisciplinary textbook and learning materials set to better prepare tomorrow’s engineers to create sustainable future energy infrastructures. 

Multinational electricity utilities firms are major forces in the global energy sector. A successful energy transition to a world run on renewables therefore requires huge investments on behalf of electricity utilities firms. Researchers from Aalto University help shine a light on the dynamics determining their cross-border investments into renewables. 

JIBS-fig2-simplified.png
Configurations leading to FDI in renewables and non-renewables and aggregate transition capacity. Image: Samuli Patala
20210410_193015
HeatStock material. Image: Konsta Turunen, Aalto University, 2022

Sustainable energy production technologies like wind turbines are common knowledge, but what about sustainable energy storage solutions? Researchers from Aalto University have developed a compact, long-term thermal energy storage system comprised of some surprising household materials.

900-05
Scanned electron image of nanocomposite fuel cell material. Image: New Energy Technologies Group, Aalto University

Hydrogen Futures

Hydrogen Futures

Hydrogen has huge potential as an energy source in transport and as a raw material in industry. However electrochemical energy conversion devices, used to convert electrical energy as hydrogen bond energy via splitting water, contain critical metals. FinH2 looks to develop new technologies which drastically reduce these metals - or even remove them altogether.

Olli_Sorsa_MEA-photo_by_Glen_Forde-2491.jpg
Membrane electrode assemblies. Image: Glen Forde, Aalto University
3D tomography of composite material used in reversible solid oxide fuel cell. Image: Imran Asghar, Aalto University
3D tomography of composite material used in reversible solid oxide fuel cell. Image: Imran Asghar, Aalto University

Reversible fuel cells offer great potential for storing renewable energy in large quantities for long periods, two drawbacks of batteries. Yet their production creates chemical waste. Aalto’s researchers are working to improve the cell efficiency in both electrolyser and fuel cell modes and reduce waste production through novel printing technology. 

As both an energy carrier and a combustible fuel, hydrogen plays a key role in providing solutions for a world powered by electrical energy. Researchers at Aalto University are developing direct injection technologies which could lead to carbon-neutral solutions for logistics, with particular focus on the maritime industry. 

Image post-processing for H2 Jet (6 individual images, namely, Raw Image, Subtracted Background Image, Magnitude Image, Denoised Image,  Binary Image, Final Image). Image: Energy Conversion and Systems & Aalto University
Image post-processing for hydrogen jet (6 individual images, namely, Raw Image, Subtracted Background Image, Magnitude Image, Denoised Image, Binary Image, Final Image). Image: Energy Conversion and Systems & Aalto University
Aalto_University_Sara_Urbanski_21-02-2023_by_Sara_Urbanski_002
Detail of photoValtic waste from solar panel, stage 2 of recycling. Image: Sara Urbanski, Aalto University, 2023

Critical Minerals and Circular Economy

Aalto_University_Sara_Urbanski_21-02-2023_by_Sara_Urbanski_005.tif
Nickel (green) and Nickel-Cobalt (Pink/Brown) containing hydrometallurgical process solutions. Image: Sara Urbanski, Aalto University, 2023

Europe is embracing renewable energy but is less enthusiastic about establishing local mines to extract the metals needed to facilitate the energy transition. ENiCoN looks to establish comprehensive, responsible mining practices through sustainable processing of lower-grade raw materials and repurposing waste materials. 

Lithium-ion batteries and photovoltaic panels are major elements of future energy infrastructures. However, their production requires critical raw materials, whereas untreated end-of-life devices harm the environment. RESTART aims to develop recycling processes that maximise finite critical materials recovery, minimise environmental damage and enhance overall sustainability of these essential energy technologies. 

Aalto_University_Sara_Urbanski_21-02-2023_by_Sara_Urbanski_001
Three sections of PhotoValtic Waste from Solar Panel, Stage 2 of recycling (50 impulses of EHF). Image: Sara Urbanski, Aalto University, 2023
Battery recycling mamangement_ Aalto BatCircle project_DSC_6604_photo Valeria Azovskaya_Original_Original.jpg
Recovered Co from Li-ion battery. Image: Valeria Azovskaya, Aalto University, 2020

Batteries are a critical element enabling the renewable energy architecture and their production is extremely mineral-intensive. BATCircle 2.0 looks at all aspects of the battery material value chain to develop sustainable battery production and recycling processes in Finland. 

Aalto_University_ENG_Ice_Tank_research_30-11-2021__photo_Mikko_Raskinen_040_Original.jpg
Aalto University ice tank research. Image: Mikko Raskinen, Aalto University

Climate Neutrality and Decision-Makers

Climate targets serve to spur action to reduce emissions. Without concrete planning and an idea of how to reach those targets, they remain mere numbers. Scenario modelling conducted at Aalto University provides national governments and international organisations pathways and illustrations to make reaching targets more feasible.  

Fig 1 Ilkka Keppo.png
Modelling framework and coverage. The economic, societal and environmental dimensions are shown in different colours. Image: Gardumi et al, 2022
Image1-TA-work_with_MTPT_toolset.jpg
Photo of people working with MTPT canvas. Image: Sofi Perikangas

Technology alone won’t be enough to transition to climate neutral energy infrastructures. Transition arena processes supported by the mid-range transition pathway design toolset (MTPT) unite participants with a broad range of expertise to co-create feasible, medium-term steps towards creating sustainable energy systems. 

Like all European countries, Portugal is looking to rapidly reduce carbon emissions and meet nationally determined and European-mandated climate targets. Finnish businesses have an opportunity to leverage their skills and technical expertise in the Portuguese energy market, but as this project demonstrates, a systemic approach is required.

slide 9 (diagram)
Overview of the Portuguese energy sector. Image: Aalto University & Nova School of Business and Economics, 2023
  • Published:
  • Updated:
Share
URL copied!